Regulators of rank one quadratic twists
نویسندگان
چکیده
We investigate the regulators of elliptic curves with rank 1 in some families of quadratic twists of a fixed elliptic curve. In particular, we formulate some conjectures on the average size of these regulators. We also describe an efficient algorithm to compute explicitly some of the invariants of a rank one quadratic twist of an elliptic curve (regulator, order of the Tate-Shafarevich group, etc.) and we discuss the numerical data that we obtain and compare it with our predictions.
منابع مشابه
A Note on Twists of (y^2=x^3+1)
‎‎In the category of Mordell curves (E_D:y^2=x^3+D) with nontrivial torsion groups we find curves of the generic rank two as quadratic twists of (E_1), ‎and of the generic rank at least two and at least three as cubic twists of (E_1). ‎Previous work‎, ‎in the category of Mordell curves with trivial torsion groups‎, ‎has found infinitely many elliptic curves with ...
متن کاملThe rank of hyperelliptic Jacobians in families of quadratic twists
The variation of the rank of elliptic curves over Q in families of quadratic twists has been extensively studied by Gouvêa, Mazur, Stewart, Top, Rubin and Silverberg. It is known, for example, that any elliptic curve over Q admits infinitely many quadratic twists of rank ≥ 1. Most elliptic curves have even infinitely many twists of rank ≥ 2 and examples of elliptic curves with infinitely many t...
متن کاملCongruences between Heegner Points and Quadratic Twists of Elliptic Curves
We establish a congruence formula between p-adic logarithms of Heegner points for two elliptic curves with the same mod p Galois representation. As a first application, we use the congruence formula when p = 2 to explicitly construct many quadratic twists of analytic rank zero (resp. one) for a wide class of elliptic curves E. We show that the number of twists of E up to twisting discriminant X...
متن کاملTwists of elliptic curves of rank at least four
We give infinite families of elliptic curves over Q such that each curve has infinitely many non-isomorphic quadratic twists of rank at least 4. Assuming the Parity Conjecture, we also give elliptic curves over Q with infinitely many non-isomorphic quadratic twists of odd rank at least 5.
متن کاملRANKS OF QUADRATIC TWISTS OF ELLIPTIC CURVES by
— We report on a large-scale project to investigate the ranks of elliptic curves in a quadratic twist family, focussing on the congruent number curve. Our methods to exclude candidate curves include 2-Selmer, 4-Selmer, and 8-Selmer tests, the use of the Guinand-Weil explicit formula, and even 3-descent in a couple of cases. We find that rank 6 quadratic twists are reasonably common (though stil...
متن کامل